4章 地業工事 3節 既製コンクリート杭

第4章 地業工事 


3節 既製コンクリート杭地業

4.3.1 適用範囲

(a) この節は、打込み工法セメントミルク工法及び特定埋込杭工法による既製コンクリート杭地業に適用する。

なお、杭の施工法の分類については、JIS A 7201(遠心カコンクリートくいの施工標準)に準ずる(図4.3.3参照)。

(b) 打込み工法の作業の流れを図4.3.1に、セメントミルク工法の作業の流れを図4.3.2 に示す。

(c) 施工計画書の記載事項は、おおむね次のとおりである。

なお、赤文字を考慮しながら品質計画を検討する。

① 工程表(施工機械及び杭の搬入時期、各ブロックごとの試験杭と本杭打込みの開始及び完了の時期等)
② 杭の製造業者名
③ 施工業者名及び作業の管理組織
④ 杭の種類、規格、寸法及び使用箇所(鋼杭の場合は、防錆処置を含む)
⑤ 材料の受入れ検査の方法及び記録
⑥ 地中埋設物・障害物の調査、移設、防護、撤去等の計画
⑦ 施工機械の仕様の概要及び性能
⑧ 施工法
⑨ プレボーリングを併用する場合はその深さ
⑩ セメントミルク工法の場合は安定液、根固め液等の調合計画及び管理方法
⑪ 杭配置図(平面図及び断面図:土質柱状図)、試験杭の位置及び杭の施工順序
⑫ 継手の工法(溶接機の種類と溶接技能者の資格を含む)
⑬ 長尺物の搬入経路
⑭ 杭支持力の確認方法(算定式、所要最終貫入量等)
⑮ 支持地盤の確認方法(地盤資料と掘削深さ、電流値との対照等)
⑯ 杭頭の処理方法(切断方法鉄筋の処理方法等)
⑰ 安全対策(施工機械の転倒防止と杭孔への転落防止等)
⑱ 公害対策(騒音、振動、油滴飛散防止策並びに掘削液の廃液処理方法等)
⑲ 施工結果報告書内容
⑳ 作業のフロー、管理の項目・水準・方法、品質管理体制・管理責任者、品質記緑文章の書式とその管理方法等

図4.3.1 打込み工法(打撃工法)の作業の流れ

図4.3.2 セメントミルク工法の作業の流れ

(d) 杭施工法の概要
(1) 施工の一般事項
既製コンクリート杭の施工に当たっては、地盤状況、現場状況、設計支持力等を考慮して、杭を予定深度まで正しく、かつ、安全に設置できる工法及び施工機械とする。

(2) 杭施工法の分類
杭の施工法の分類を図4.3.3に、杭の施工法の実績推移を図4.3.4に示す。
なお、(  )内は「標仕」の名称を示す。


図4.3.3 杭の施工法の分類(JIS A 7201 : 2009)


図4.3.4 杭の施工法の実績推移((-社)コンクリートパイル建設技術協会のデータによる)

① 打込み工法(図4.3.5及び6参照)
一般に杭径 600mm以下の施工に用いられる。地盤を緩めることがなく耐力は期待できるが、ハンマーを使用するため騒音、振動が大きく、市街地では問題が多い。このための対策として、油圧パイルハンマーやドロップハンマーによるプレボーリング併用打撃工法等が用いられている。

この工法は、アースオーガーで一定深度まで掘削したのち、杭を建込み打撃する工法である。中・小径で硬い中間層を抜く場合及び騒音振動を軽減し、杭の貫入を容易にする場合等に使用される。

通常、粘性土の場合のオーガーの掘削径は、杭径-50mm程度である。

なお、杭径が700mm以上の杭の施工に当たっては.施工実績が少ないため.特に注意が必要である。


図4.3.5 パイルハンマー打撃工法


図4.3.6 プレボーリング併用打撃工法

② プレボーリングによる埋込み工法(図4.3.7参照)
プレボーリングによる埋込み工法は、アースオーガーで掘削した孔に杭を設置する工法であり、セメントミルク工法と称する一般工法、最終的に打撃をする方法及び先端を拡大根固めした特定埋込杭工法がある。

杭の設置方法は、自重による設置を基本とし、圧入、軽打、回転等を併用する場合もある。掘削には地盤や工法によって水や安定液が使用されることがある。

セメントミルク工法は、アースオーガーによってあらかじめ掘削された縦孔に既製杭を建込むものである。掘削中は孔壁の崩壊を防止するために安定液をオーガー先端から噴出し、所定の深度に達したのち、根固め液に切り換え、所定量を注入完了後、杭周固定液を注入しながらアースオーガーを引き上げる。その後、杭を掘削孔内に建込む工法である。

この施工法は、国土交通省住宅局建築指導課監修「埋込み杭施工指針・同解説」に準じて施工するものである。

なお、このセメントミルク工法で、通常用いられている杭径は 300~600mm、施工深度は30m程度である。

また、特定埋込杭工法の中のプレボーリング工法については、種類が多いのでそれぞれの適用範囲を確認し、各工法に定められた条件に従って施工する。


図4.3.7 プレボーリングによる埋込み工法(セメントミルク工法の場合)

③中掘りによる埋込み工法(図4.3.8参照)
杭中空部にアースオーガー等を挿入し、杭先端地盤を掘削しながら、杭中空部から排土し、杭を設置する工法であり,比較的杭径の大きなもの(一般的にはφ 500mm以上の杭)の施工に適している。

杭の設置や排土を促進するため、圧縮空気又は水をオーガーヘッド先端から噴出させ、施工機械の自重を利用した圧入又はドロップハンマーによる軽打等を併用している場合が多い。

掘削機には、アースオーガー、オーガーバケット等が使用される。また、杭に作用する周面摩擦抵抗を低減させ、杭の沈設を容易にするために、先端にはフリクションカッターを取り付けるのが一般的である。

支持力発現方法としては、所定の深度に達したのち、杭に打撃を加える方法と杭先端部を根固めする方法がある。

杭に打撃を加える方法には、国土交通省住宅局建築指導課監修「中掘り打撃工法設計・施工指針」に準じて施工するものである。この工法の先端支持カ算定式は打込み工法と同じ取扱いである。

根固めする方法(図4.3.8(イ))には、杭先端部を根固めする方法と拡大根固めする方法とがある。拡大根固めする方法には、オーガーの先端に装備された拡大ヘッドによる方法(図4.3.8(ロ))、オーガーヘッド又はロッドから高圧又は低圧で根固め液を噴射する方法(図4.3.8(ハ))と、これらを併用し築造する方法があり、特定埋込杭工法となっている。これらの施工に当たっては、各工法に定められた条件に従って行うものとする。


図4.3.8 中掘りによる埋込み工法

④回転による埋込み工法(回転根固め工法)(図4.3.9 参照)
回転圧入による埋込み工法は、杭先端金物により掘削を行い、杭体に回転力を与えながら圧入し、杭を所定の位置に設置する工法である。回転圧入時は、水等を先端部から噴出して補助するものもある。

杭の支持力発現方法は、根固めによる方法が一般的である。


図4.3.9 回転による埋込み工法(回転根固め工法)

(e) 支持力の算定
杭の許容支持力は、地盤の許容支持力と杭体の許容耐力のうちいずれか小さいものとする。

基礎杭の許容支持力を定める方法は、その種類に応じて「地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件」(平成13年7月2日 国土交通省告示第1113号)(以下、この節では「告示第1113号」という。)に定められている( 24.1.9参照)。この内、一般的には次のものがある。

(i) 載荷試験による極限支持力(Ru)により、地盤の長期許容支持力(Ra)を定めるもの

(ii) 基礎杭先端付近の地盤の標準貫入試験の平均 N 値から基礎杭の先端の地盤の許容応力度( qp)を定めたもの

① 打込杭

② セメントミルク工法による埋込杭

(iii) 地盤の許容応力度及び基礎杭の許容支持力を求めるための方法として、杭打ち試験が挙げられている。ただし、告示第1113号では、具体的な算定式等については示されていない。

(iv) 特定埋込杭工法の場合は、各工法に定められた算定式とする。

4.3.2 材 料

(a) 杭の種類
一般的に用いられている既製コンクリート杭の種類を図4.3.10に示す。

図4.3.10 主な既製コンクリート杭の種類

PHC杭は、コンクリート設計基準強度が80 N/mm2以上で、形状的には全長にわたり同一断面の杭(ストレート杭という。)であるが、端部が拡大された杭(ST杭という。)や、全長にわたり等間隔で突起部が付いた杭(節杭という。)もある。これらの杭の本体部は本体部径が等しいPHC杭と同じ性能を有するので、分類上はPHC杭に含まれる。

また、最近では、コンクリート設計基準強度が100 N/mm2以上の杭や肉匝の厚い杭のほか、部分的に特殊な形状のものも開発されており、これらも分類上はPHC杭やSC杭となる。

PRC杭(ストレート杭)にも同様にPRC-ST杭やPRC-節杭がある。

これらの杭の大部分は、JIS I 類規格品又は性能評価機関により、告示第1113号に定める品質を満足する内容の(任意)評定を取得しているものである。

(b) 杭の製造工程
各既製コンクリート杭(略称でPHC杭、SC杭、PRC杭、ST杭及び節杭)の製造工程の例を、図4.3.11に示す。

なお、PRC杭、ST杭及び節杭の製造工程はPHC杭の場合と同じである。

図4.3.11 各既製コンクリート杭の製造工程の例

(c) 杭材料の品質
(1) 既製コンクリート杭については、告示第1113号第8で材料の許容応力度が定められているので、その抜粋を次に示す。

地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件

(平成13年7月2日 国土交通省告示第1113号 最終改正平成19年9月27日)建築基準法施行令(昭和25年政令第338号)第93条の規定に基づき、地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法を第1に、その結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法を第2から第6に定め、並びに同令第94条の規定に基づき、地盤アンカーの引抜き方向の許容応力度を第7に、くい体又は地盤アンカ一体に用いる材料の許容応力度を第8に定める。第8 くい体又は地盤アンカ一体に用いる材料の許容応力度は、次に掲げるところによる。

二 遠心力鉄筋コンクリートくい及び振動詰め鉄筋コンクリートくいに用いるコンクリートの許容応力度は、次の表(省略)の数値によらなければならない。この場合において、設計基準強度は40N/mm2以上としなければならない。

三 外殻鋼管付きコンクリートくいに用いるコンクリートの圧縮の許容応力度は、次の表(省略)の数値にらよらなければならない。この場合において、設計基準強度は 80N/m2以上としなければならない。

四 プレストレストコンクリートくいに用いるコンクリートの許容応力度は、次の表(省略)の数値によらなければならない。この場合において、設計基準強度は50N/mm2以上としなければならない。

五 遠心力高強度プレストレストコンクリートくい(JIS A5373(プレキャストプレストレストコンクリート製品)- 2004 附属書5 プレストレストコンクリートくいに適合するものをいう。)に用いるコンクリートの許容応力度は、次の表(省略)の数値によらなければならない。この場合において、設計基準強度は80N/mm2以上としなければならない。

六 前各号の規定にかかわらず、くい体の構造方法及び施工方法並びに当該くい体に用いるコンクリートの許容応力度の種類ごとに応じて行われたくい体を用いた試験により構造耐力上支障がないと認められる場合にあっては、当該くい体のコンクリートの許容応力度の数値を当該試験結果により求めた許容応力度の数値とすることができる。

(2) 代表的な杭材料の品質の例を表4.3.1に示す。これ以外の杭は、告示第1113号第8第六号の規定により認められた許容応力度の数値とすることができる。

表4.3.1 杭材料の品質の例

(3) 代表的な遠心力高強度プレストレストコンクリート杭〈PHC杭〉には、JIS A 5373(プレキャストプレストレストコンクリート製品)附属書 E による製品規格(推奨仕様 E-1 )がある。JIS A 5373による単体長さは、4~15m(ただし、φ300及びφ350のA種は 4~13m)である。

杭体の曲げ強度を表4.3.2に示す。

表4.3.2 遠心力高強度プレストレストコンクリート杭〈PHC杭〉の曲げ強度
(JIS A 5373 : 2010 推奨仕様E-1)

また、ストレート杭のほか、拡径断面を有する杭(ST杭)や節部付きの杭(節杭)等がある。

(i) 拡径断面を有する遠心力高強度プレストレストコンクリート杭〈ST杭〉は、杭の先端部を太径にした拡底PHC杭で、大きな地盤支持力が得られるもので ある。拡径部に溝が付いた杭等もある。また、拡径部を下端ではなく、上方側で用い、その上方に拡径部と同径の杭を接続する使用方法(拡頭タイプ)もある。

(ii) 節部付き遠心力高強度プレストレストコンクリート杭〈節杭〉は、杭本体部を約1m間隔で節部としたPHC杭で、大きな周面摩擦力が得られるものである。一部にのみ節部を有する杭もある。節杭にも拡頭タイプがある。

(4) 外殻鋼管付コンクリート杭〈SC杭〉は、大きな水平力が作用する場合に使用するために開発された杭で、鋼管(材質STK400、STK490、SKK400、SKK490、SS400、SM400ABC、SM490ABC、SN400ABC、SN490ABC、材厚 4.5~25mm)に膨張性コンクリートを遠心力で張り付かせて一体化させた複合構造であり、一般にPHC杭の上杭として使用される。最近では、不等厚鋼管を用いた製品もある。

(5) プレストレスト鉄筋コンクリート杭〈PRC杭〉は同様に水平力に抵抗するために開発されたPHC杭とRC杭の合成されたものであり、軸鉄筋としてPC鋼材のほかに鉄筋コンクリート用異形棒鋼 D10~D35を配置している。また、ストレート杭のほか、拡径断面を有する杭(ST杭)や節部付きの杭(節杭)等がある。(3)(i)及び(ii)参照。

(6) 杭先端部
杭先端部の形状は図4.3.12が標準で、土質及び工法に応じて適切なものを選定する。

一般に、打込み工法やセメントミルク工法では、平たん又は凹形の閉塞形が多く用いられ、中掘り工法や特定埋込杭工法では開放形が用いられている。最近では、大径杭や長尺杭のセメントミルク工法では、開放形が用いられている。特定埋込杭工法では、開放形の先端部に回転押込み補助用の金具を取り付けているものもある。

これらの先端部に、更に、地層や工法に適した先端金具等を取り付けて施工することが多い。

なお、杭先端部と地盤の成層状態との関係を表4.3.3に示す。


図4.3.12 杭先端部の形状

表4.3.3 杭先端部と地盤の成層状態との関係

(7) 既製コンクリート杭関係のJIS(JIS A 5372及びJIS A 5373)

(i) JIS A 5372(プレキャスト鉄筋コンクリート製品)及びJIS A 5373(プレキャ ストプレストレストコンクリート製品)は、性能規定化を目指した2004年の改正で「本体規格」-「附属書」-「推奨仕様」という形で構成され、以前の個別製品ごとの仕様規格は推奨仕様として規定された。また、これらJISでは、製品を I類、 II類に区分しており、その定義は次のとおりである。

I 類:製品の性能を満足することが、実績によって確認された仕様に基づいて製造される製品で、附属書に推奨仕様が示されているもの。

Ⅱ 類:受渡当事者間の協議によって、性能及び仕様を定めて製造される製品。なお、受渡当事者間とは、製造者と工事請負人である購入者ではなく、製造者と工事の発注者又は自ら工事を行うものをいう。

(ii) 従来は、JIS A 5373の I類のPHC杭が主流であったが、近年では、性能設計思想により多種多様の杭が用いられるようになってきている。

(iii) 現在、I 類規格品のあるものは、RC杭、PHC杭、PHC-ST杭及びPHC-節杭のみである。SC杭及びPRC杭はJISに名称はあるものの推奨仕様がないので、 JIS規格品(Ⅱ類)としての扱いとなっているため、告示第1113号による指定性能評価機関の評定品が使用されている。コンクリート設計基準強度が 100N/mm2以上のものも同様である。

4.3.3 打込み工法

(a) 打込み工法は、杭の支持力を得るために、最終工程に打撃を行うものと「標仕」では規定している。この工法は、施工の打込み時において杭の最終貫入量が測定され、推定支持力の管理基準値が定められている工法を示しており、打撃工法、プレボーリング打撃工法、中掘り打撃工法等がある。杭の取扱い及び工法はJIS A 7201(遠心カコンクリートくいの施工標準)による。

(b) 試験杭
(1) 打撃工法における試験杭の目的は、杭の推定支持力、土質状態、杭の長さ、施工時間、施工機械の適否等の確認である。本杭施工の前に行う杭打ち試験により適切な施工方法等の検討を行う。

また、杭の設計支持力は、特記により定められている。試験杭の杭打ち試験において、打込み深さ、最終貫入量等の管理基準値を確認し定めることが必要である。

(2) 試験に使用する杭は、原則として設計図書に示された諸元・材質のものを使用するが試験杭の長さは、支持層の位置が推定より深いこともあるので、本杭より2m程度長いものを用いるのが望ましい。

(3) 試験杭は、4.2.2で述べた理由で本杭の施工機械と同一機種で行うことが原則である。

(4) 調査項目及び調査方法は、打撃工法を例として次に示す。
(i) 打込み途中
杭に図4.3.13のように何m貫入したか分かるように印を付けておき、原則として、0.5~1.0mごとに次の項目について記録する。

1) 打撃回数   [ 回/m ]
2) 全打撃回数  [ 回 ]
3) 全打込み長さ [ m ]
4) 打込み所要時間[ 時分 ]

(ii) 打止まり
最終10回以上の打撃による平均値として
1) ハンマーの落下高さ[ m ]
2) 最終貫入量    [ mm ]
3) リバウンド量   [ mm ]

(iii) 支持層の確認
貫入量の減少と柱状図との比較により支持層の確認を行い、最終貫入量を測定する。

最終貫入量及びリバウンド量の測定は、図4.3.14に示すようにセクションペーパーを杭に張り付けておき、水平においたガイド材に沿って鉛筆を横に移動させていくと、図4.3.15のように杭の動きが記録される。


図4.3.13


図4.3.14 測定方法


図4.3.15 貫入量の記録

(5) 推定支持力の算定方法は特記によるとされているが、一般的には次の方法が用いられている(JIS A 7201より)。

( ⅰ )打込み杭の推定支持力

(ii) やっとこを使用した場合
やっとこを使用した場合には、算定値を0.8倍程度に低減しているが、地盤性状や杭打ち機(やっとこの構造)等によりその低減率は異なるので、やっとこを使用した場合と使用しない場合との値を実測して低減率を決めることが望ましい。

(c) 打込み工法に用いるハンマーの種類
(1) 各ハンマーの長所短所の比較を表4.3.4に示す。特に打撃工法による杭打ち施工は、大きな騒音・振動を発生するので、選定に当たっては、工事現場周辺の環境の保全に注意し、騒音・振動対策を十分に実施しなければならない。図4.3.16及び17に基礎工事用機械の騒音レベル、振動レベルの参考値を示す。

表4.3.4 各ハンマー長所短所


図4.3.16 基礎工事用機械の騒音レベル


図4.3.17 基礎工事用機械の振動レベル

(2) ディーゼルパイルハンマー
ディーゼルエンジンの原理によるハンマーである。ラム(上下動するピストン部分)の落下高さが2mを超えるような能力の小さいハンマーでは杭頭を破壊するおそれがあるので、落下高さが2m以下で杭を打ち込める能力のあるものとする。最近では、施工実績はほとんどない。

ラム質量と杭径の関係は、おおむね表4.3.5のとおりである。

表4.3.5 ラム質量と杭径の関係

(3) 油圧ハンマー
建設省技術評価制度(1983年)によって評価・普及し、油圧によってラムを作動落下させる杭打ち用ハンマーで、ディーゼルパイルハンマーに比べて大幅に騒音を低減する(15~20ホン)とともに油煙の飛散が全くない。ラムの落下高は 0.1 mごとに任意の高さに調節できる。従来のディーゼルパイルハンマーに比べて「重いラムを低い位置から落下させる」という特徴がある。

(4) ドロップハンマー〈モンケン〉
鋼製ハンマーの自然落下により打ち込むもので、自重が杭質量以上、かつ、杭長さ 1m当たり質量の10倍以上のものを使用する。落下高さは原則として、2m以下とし、杭頭の破損を防ぐ。

(d) アースオーガー
打込み工法に併用するアースオーガーは、プレボーリング工法と同様に地層に合わせた十分な性能をもち、適正な掘削速度で行わなければならない。

(e) 杭の心出し
杭の心出しは、堅固に設置した遣方から行い、小さい木杭等で、杭心を表示しておく。また、杭心合わせは円板を定規に、心を合わせて周囲に石灰で線を引くなどの方法により行い、杭ずれを防ぐ。

(f) 運搬及び取扱い
(1) 運搬及び取扱いに当たっては、杭に損傷を与えないように注意し、有害なひび割れや傷が生じた杭を使用してはならない。

(2) 運搬に際しては、適切な位置にまくら材を敷き運搬中に荷崩れしないようロープ、くさび等を使用して強固に留める。

(3) 杭の吊上げ点は、JIS A 7201(遠心カコンクリートくいの施工標準)による。また、吊上げ点の位置は、工場あるいは現場で印をつけておくことが望ましい。

(4) 杭の仮置きは地盤を水平に均し、杭の支持位置にまくら材を置き1段に並べることが望ましい。やむを得ず2段以上に積む場合には有害な応力が生じないよう、また、荷崩れしないよう適切な処置をとる。

(g) 建込み
(1) 地中障害物等が予想される場合は、杭施工に先立ち試掘等を行い必要に応じて撤去する。

(2) 杭の建込みは、杭心に正しく設置し、杭打ち機の鉛直器又は、直角二方向からトランシット、下げ振り等を用いて観測し、杭が正しく鉛直を保つようにする。

なお、先端が閉塞している杭で中に水が入っている場合は、ウォーターハンマー現象により縦割れを生じるおそれがあるので水を抜いてから建込む。

(h) 打込み
(1) 杭、キャップ、ハンマーの各軸がずれると偏打の原因となるので、クッションの交換等、十分な調整を行い、各軸を合わせてから打撃を開始しなければならない。

(2) 1群の杭の打込みは、なるべく群の中心から外側へ向かって打ち進める。逆にすると地盤が締まってしまい、中心部分で打込みが困難になる。片押しも同じような理由で避けるのがよい。

(3) 1本の杭の打込みは、なるべく中断しないで連続して行う。一時中止すると打込みが困難になることがある。

(4) ディーゼルパイルハンマーで最初から連続打撃すると、杭の傾斜や曲がりが生じやすいため、打初めは数回空打ちして、杭の貫入方向を確認するのがよい。

(5) 油圧パイルハンマーはラムの質量が比較的大きいので、杭の鉛直性が不安定な初期段階にラム落下高が大きいと、1打撃当たりの貫入量が大きくなり、杭が傾斜することがあるので、落下高さを10~20cm程度にするのがよい。

なお、ラムの最大落下高さは、杭の種類等に応じて決定する必要がある。

(6) ドロップハンマーで打込む場合には、杭が振れやすいため、杭の傾斜や座屈等が起こるおそれがあるので、初期貫入時に特に慎重な施工をしなければならない。

(7) 打込み中は、随時杭軸の変位、傾斜及び貫入状況を観測し、傾斜、変位については打込み初期に修正する。杭頭が破壊した場合は設計担当者と打ち合わせ、増杭等の処置が必要になる。

(8) 杭に傾斜が生じると貫入量が少なくなる。特に、砂質土の場合は影響が大きく、鉛直を保っていないために打込み困難となる場合がある。また、大きく貫入するはずのない箇所で急激に貫入量が増すなどの異常貫入は、杭の途中破壊、座屈等による場合がある。

(9) 杭頭のクッション材が損耗すると、クッション効果がなくなり杭頭が破壊するので、杭頭キャップのクッション材の損耗には注意する。

(10) 杭を作業地盤面以下に打込む場合には、図4.3.18のようなやっとこが用いられる。やっとこをかける長さは4m程度を限度とし、長いものは避けるようにする。

(11) 杭先端が開放の場合は、中空部に土が入り空気が圧縮されたり、また、水が入りウォーターハンマー現象等で杭が破裂する場合があるので、杭内の土及び水の上昇に対応して十分な空気抜き孔を設けたキャップを使用する。

(12) 打込み中に杭が浮き上がったり、横移動する場合には、杭先端に穴をあけたり、オーガー併用等の対策をする必要がある。

(13) 軟弱地盤に打込む場合、中間の比較的硬い地層を打ち抜く場合や長尺杭を施工する場合には、打撃力を調整(ハンマー落下高さを小さくすることや特殊キャップの使用等)して打撃を行い、杭に生じる引張力によるひび割れを生じさせないようにするか、プレストレスの大きい杭を使うなどの検討をする必要がある。


図4.3.18 やっとこ

(i) 打止め
打込みは、原則として、指定された深さまで行う。指定された深さに達しても所定の貫入量以下にならない場合又は指定された深さに達する前に所定の貫入量以下になった場合は、設計担当者と打ち合わせて、杭の長さを変更する必要がないか検討する。

また、杭に過剰な打撃を与えないための目安は、杭の長さ・形状や地盤の状況等により一義的には決められないが、JIS A 7201には、杭1本に対する打撃制限回数の目安が示されている(表4.3.6参照)。

表4.3.6 総打撃回数の目安(JIS A 7201 : 2009)

(j) 施工精度
打込み完了後の杭頭の水平方向のずれの精度は特記によるとされている。ずれが所定の値を超えた場合の処理については設計担当者と打ち合わせる。

施工精度の目安値としては、(-社)日本建築学会「JASS4 杭・地業および基礎工事」では、水平方向のずれはD/4 (Dは杭径)、かつ、100mm以下、鉛直精度は 1/100以内とすることが望ましいとされている。

杭頭の水平方向のずれの発生は、施工時における杭位置合わせの不良による場合が主と考えられるが、その他に杭心位置を表示した杭の設置違い、軟弱な施工地盤において機械移動に伴う表示杭の移動、障害物(地上、地中)の存在及び不陸な施工地盤面での工事環境等の要因も含んでいるので、杭工事の事前整備が重要となる。

4.3.4 セメントミルク工法

(a) セメントミルク工法の概要は.4.3.1(d)に示すとおりである。
この工法は国土交通省住宅局建築指導課監修「埋込み杭施工指針・同解説」もあり確立された一般的な施工法であるが、杭の耐力や精度等は施工する者の経験と技術力によるところが大きいため、専門施工業者に保有機械や施工実績等を提出させ、工事に相応した技量を有していることを確認しなければならない。

また、信頼のおける杭を施工するために、施工管理技術者として、技術士、建築士、土木施工管理技士、建築施工管理技士等、又は(-社)コンクリートパイル建設技術協会の「既製杭施工管理技士」の資格を有する者等を置くことが望ましい。

(b) 試験杭
(1) 埋込み工法における試験杭の目的は、施工機械や各種の安定液等の適否、土質状態、地下水位及び被圧水等の有無、施工時間、支持地盤の位置及び種類の確認であるが、更に、掘削試験における掘削深さ、高止まり量やセメントミルク拡等の管理基準を定めることでもある。特に打止めの深さの確認は打込み工法のような動的支持力による確認を行うことができないため、杭先端位置が設計上の支持層地盤に到達しているかを立会い確認する必要がある。

(2) 一般的な試験方法は、原則として、設計図書等で特記された位置に行い、特記がされてない場合は、地盤構成が明らかなボーリング調査実施地点に近接した杭を数本施工し、掘削機の電流計の値や掘削能率等の施工データ及びオーガースクリューに付着している土砂と土質調査資料又は設計図書との照合で、地盤構成との関係を求める。次に、10~30mm間隔で先行杭を施工し、施工データを参考に支持層を確認し、敷地全体の支持層深さを明らかにする。電流計の自動計測の例を図4.3.19に示す。

なお、電流計による値とN値の関係は定量的な関係がない。例えば、電流値の 200 AmpがN =45に相当するとの関係はなく、またその調査方法の違いからも無理があるため、現時点では地層構成の硬さの変化の傾向を調べるだけの定性的な参考値であることに注意されたい。

(3) 調査項目は、次の事項を主とし、表4.3.7の管理項目について行う。

表4.3.7 管理項目 (埋込み杭施工指針より)

(i) 掘削液、根固め液、杭周固定液等

(ii) 杭建込み
① 杭の鉛直性
② 圧入の状況
③ 高止まり量
④ 杭周固定液の溢液の確認

(iii) 掘削
① 作業地盤
② 掘削土の確認
③ 掘削所要時間
④ 孔内液面の高さ

(iv) 注入
吐出量、吐出圧、吐出時間、注人量

(4) 支持層の確認に際しては、電流計指示値や掘進速度で把握するとともに、ときどきオーガーを静かに引き上げ、羽根に付いている土を観察する。

なお、あらかじめ支持地盤の深さを示す 0.5mごとの等深線図を作成しておくとよい。


図4.3.19 自動計測記録の例

(c) セメントミルク工法による施工
(1) 掘削機
(i) アースオーガーは連続スパイラル製の中空軸のものを用いるが、性能や寸法等が各メーカーにより異なるので、十分検討して適切なものを選ぶ。スクリュー長さは所定掘削深さ+3m程度とし、曲がりのあるものは使用しない。

(ii) オーガーヘッド(オーガービット)は施工精度、施工能率等に与える影響が大きいので掘削地盤に応じて適切な形状のもの使い分ける(図4.3.20参照)。ヘッド径(ビット径)は、「標仕」4.3.4 (f)で杭径+100mm程度とされている。


図4.3.20 オーガーヘッド

(iii) 支持地盤の確認には、アースオーガーの駆動用電動機の電流値の変化が目安となる。このため「標仕」4.3.4(f)では電流値を自動記録できるものとしている。
なお、油圧式オーガーを用いた場合の支持地盤の確認については、設計担当者と打ち合わせる必要がある。

(2) 掘削
(i) 掘削は、地盤に適した速度で掘り進めることが重要である(表4.3.8参照)。粘着力の大きな地盤や硬い地盤では無理な負荷をかけるとアースオーガーが曲がったり破損したりするため十分に時間をかけて掘削排土する。

表4.3.8 掘削速度

(ii) オーガーの引上げ速度は、根固め液等の注入量に合わせて行う。
注入量に比べて引上げ速度が速いと孔内に負圧が生じ、孔壁崩壊の原因となる。
また、逆の場合には孔内圧が上がり過ぎて、逸水を生じて孔壁崩壊の原因となる。

(iii) 掘削中、オーガーに逆回転を加えるとオーガーに付着した土砂が落下するので、「標仕」4.3.4(f)では、逆回転を行ってはならないと定めている。

なお、引上げ時にも正回転とする。

(iv) 掘削深度が支持地盤に近づいたら掘削速度を一定に保ち、アースオーガーの駆動用電動機の電流値の変化を読みとって支持地盤への到達を確認する。

(v) 支持層の掘削深さや杭の支持地盤への根入れ深さは、設計支持力とも関連するため特記によるが、一般的には支持層の掘削深さを1.5m程度とし、杭を支持層中に1.0m以上根入れする。また、高止まりは0.5m以下とする(図4.3.21参照)。

(vi) 掘削は、養生期間中の杭に悪影響を与えないよう十分に注意して行う。杭の間隔は杭径の2.0倍程度とすることが多いが、セメントミルク工法の場合には掘削径を杭径+100mmとしており、透水性の高い砂質地盤等で孔壁が崩れやすい場合には、掘削によって隣接杭周囲の地盤を緩めるなどのおそれがあるので十分注意する。


図4.3.21 掘削深さと支持層との関係

(3) 各種液の管理
(i) 掘削液
① 掘削液(安定液)の機能は、孔壁の崩落を防ぐよう安定を保ち、各種の液の逸水を防ぎ、湧水やボイリングを抑えることなどである。管理については、4.5.4 (c)(3)を参照する。

② ベントナイトは粉末度200メッシュ以上、膨潤度 3g/g以上のものを使用するとよい。調合及び粘性については表4.3.9及び4.5.4(c)(3)を参照する。

表4.3 9 掘削液の調合例

(ii) 根固め液
① 根固め液の水セメント比は、施工の実績等から「標仕」では70%(質量百分率)以下としている。また、「標仕」4.3.4(f)では圧縮強度は3個の供試体の平均値で 20N/mm2以上と定めているが、これは試験結果にばらつきが大きいこと、セメントペーストの指定強度の算出が困難であること、杭の設計耐力を確保するために必要な強度として20N/mm2程度で十分であると考えられることなどから決められたものである。

② 根固め液は必ず杭の先端位置から注入しはじめ、安定液を押し上げるようにする。オーガーヘッドは常に根固め液の上面以下に保つ。また、オーガーを上下させてはならない。

なお、ポンプからの圧送時点とオーガーヘッド先端からの注入時点とで時間的ずれがあるので、試験掘削のときに十分検討しておく。

(iii) 杭周固定液
① 杭周固定液は、杭長が長く、かつ、周辺地盤が軟弱で、強度の高い根固め液を杭頭まで充填する必要がない場合に使用するほか、杭の水平抵抗と摩擦力を確保するために使用するものであり、硬化後の圧縮強度のみでなく、既製杭との付着強度が周辺地盤より高いことが必要である。

② 調合は、現場の土質条件に応じた試験練りを行ってから決定するのが望ましい。杭周固定液のブリーディングの発生を抑制するためにベントナイトが使用されるが、その調合例を表4.3.10に示す。

表4.3.10 杭周固定液の調合例

(iv) 管理面から見れば使用液の種類は少ない方がよく、なるべく2種類の液で行うことが望ましい。

なお、崩壊しやすい地盤や逸水のおそれのある地盤では、安定液と杭周固定液とを兼用することは好ましくない。

(v) 根切り後、杭と地盤の間に空隙がある場合は、杭の水平抵抗を確保するために、増粘剤を添加した杭周固定液やモルタルを使用して空隙を埋める。

(vi) 供試体の製作には 、(公社)土木学会「コンクリート標準示方書(規準編)」のプレパックドコンクリートの注入モルタルのブリーデイング率及び膨張率試験方法によるポリエチレン袋を使用することになっているが、地方等で入手が困難な場合には、(-社)コンクリートパイル建設技術協会のポリエチレン袋を使用すればよい。

(4) 杭の建込み
(i) 掘削孔壁が時間経過とともに崩壊することがあるので、速やかに杭を建込む。
(ii) 杭の建込み直前に、必要に応じて下げ振り等により検尺を行い、高止まりしないかどうかを確認しておく。

(iii) 掘削孔に杭を挿入する際、杭の先端で孔壁を削ると高止まりの原因となるので鉛直性に注意して建込む。また、挿入速度が速すぎると水流によって孔壁が崩落するので、静かに挿入する。

(iv) 杭が所定の支持地盤に逹したのち、杭先端を根固め液中に投入させるため 2t 程度のドロップハンマーで軽打する(落下高さは0.5m程度とする。)。

軽打できない場合は、杭打ちゃぐらの重量を反力として圧入する。杭頭を設計高さにそろえるために、杭を中吊りにしたり圧入量を調整してはならない。

(v) 施工後、根固め液や杭周固定液が十分硬化する以前に杭が動くことのないよう適切な保持治具を用いて養生する。

(vi) 継杭を行う場合は、下杭の杭頭を地上約1m程度に保持しておき、上杭を建込み、継手の接続を行う。図4.3.22に保持装置の一例を示す。


図4.3.22 保持装置の一例

(5) 杭の運搬、取扱い、施工精度は4.3.3による。

(6) 廃液処理、排土処理は場所打ちコンクリート杭に準ずる。

4.3.5 特定埋込杭工法

(a) 一般事項
特定埋込杭工法は、平成13年国土交通省告示第1113号第6の規定に基づいて許容支持力が定められた埋込み工法のことをいい、下記の種類がある。

(i) 平成14年1月11日付けの国土交通省住宅局建築指導課の事務連絡に基づく旧38条認定工法

(ii) 建築基準法施行規則第1条の3第1項の規定に基づく認定工法

(iii) 指定性能評価機関による技術評定を取得している杭で、地盤の条件等が評定の適用範囲と見なせる場合

(iv) その他、上記以外で許容支持力が求められた工法

(b) 試験杭
(1) 特定埋込杭工法の試験杭は、本工事の初期あるいは本工事に先立ち、設計・施工計画の妥当性を確認するために実施するもので、使用機械や各種の使用液の適否、施工能率、特記で定められた支持層の位置及び種類の確認が主な目的である。

(2) 特定埋込杭工法の試験杭の施工については、各工法に定められた施工条件に従って行う。

(c) 施 工
特定埋込杭工法の杭は各施工法によって機械機種や施工方法も異なるので各工法に定められた施工条件に従って行うものとする。一般的な事項を次に示す。

(i) 掘削法
プレボーリング工法に用いるアースオーガーは、スパイラルオーガー、特殊ロッド、両者の併用等があり、中掘り工法では、連続スパイラルオーガーが用いられる。

駆動装置は、掘削径、長さ及び地盤条件により、一般に 40~250kWが使用される。

オーガーヘッドについては、地層に合わせた形状や工法仕様によりいろいろな構造が選定される。

支持層の確認には、駆動用電動機の電流値を自動記録し、目安とすることが行われてきたが、これは掘進速度や駆動機容量に左右され、明確にできないことも多い。したがって、消費電流値と時間を掛けた積分電流値で目安とする技術が進められ、従米より正確であるとして試験杭において用いられ普及しつつある。

(ii) プレボーリング工法による施工
① プレボーリング工法による掘削径は、工法により異なるが、杭径よりも +30~100mm程度が多く、できるだけ過大とならないことが望ましい。

② 掘削は周囲の地盤をできるだけ乱さないように行う。

③ 孔壁崩壊のおそれのある場合又はボイリングのおそれがある場合は、掘削液を使用し、適切な処置をして施工する。崩壊のおそれがない場合は、掘削液を使わず施工してもよい。

④ 継手接続作業中は、杭の孔内落下を防止する処置をしなければならない。

⑤ その他については、施工計画書、施工仕様書等に従って適切に施工する。

(iii) 中掘り工法による施工
① 中掘り工法に使用するスパイラルオーガー径は、杭の内径 -(30~60)mmが一般的である。

② 掘削中は過度に先掘り及び拡大掘りをしてはならない。

③ 中空部の排土を促進するため、オーガー先端からエアーを噴出させ、効果的に排土することが多い。一般に常用圧力 0.7 ~ 1.0MPaのものが使われている。

④ 最終打撃によって支持力を得ようとする工法の場合、過度の先掘りをしてはならない。中掘り設置後の打込み長さは地盤状態に影響されるため試験杭において定められるが一般には杭径の 3~5倍程度を目安としている。

(iv) 根固め
① 埋込み工法で先端部を根固めする場合は、施工計画書、施工要領書等による方法で先端部を処理して支持力の確保を図らねばならない。

② 根固め作業に使用するミキシングプラント、グラウトポンプは、十分な性能を有すること。材料の計量及び作液については、自動的に行うとともに、その計量記録をプリントアウトするプラントが製造され、一部使用されつつある。最近では、根固め部の品質確認のために、根固め部から試科を採取して固化強度等を調査する管理手法が、研究・開発されている。

(v) 杭の運搬及び取扱い、施工精度等については.4.3.3 による。

また、杭頭中空部に基礎コンクリートを打ち込む方式で、短い杭の場合、根固め液や杭周固定液が砂や礫で増量し、杭頭まで上昇して固化することがある。

この場合、溶液の使用量について試験打ちで検討する。

(vi) 廃液処理、排土処理は、場所打ちコンクリート杭に準ずる。

(vii) 施工管理者は、当該工法の施工管理講習会を受講した者や (-社)コンクリートパイル建設技術協会が定める既製杭施工管理技士の資格を有する者が望ましい。
また、専門工事業者の技術レベルを確認する場合は、当該工法の施工実績等を提出させる。

4.3.6 継 手

(a) 現場継手方法

(1) 杭の現場継手は、溶接による工法と接続金具による無溶接継手工法とが採用されており、「標仕」では杭の継手の工法の適用は特記とされている。

(2) 技能者
(i) 溶接継手は「標仕4.3.6(c)」に定めた資格を有する者

(ii) 無溶接継手は、接続方法の講習会を修了し、接続方法を理解したと認められる者

(3) 溶接棒は、JIS Z 3211(軟鋼、高張力鋼及び低温用鋼用被覆アーク溶接棒)の規格によるものとし、自動溶接又は半自動溶接を用いるときには、これに適した溶接ワイヤを用いる。

JIS A 7201(遠心力コンクリートくいの施工標準)では、表4.3.11のように定められている。

表4.3.11 溶接棒、ワイヤの種類及び径(JIS A 7201 : 2009)

(4) 継手部の開先の目違い量は2mm以下、許容できるルート間隔の最大値は 4mm以下とする(図4.3.23参照)。


図4.3.23 杭の継手部許容値(JIS A 7201 : 2009)

(b) 溶接施工
(1) 溶接の方式には端板式と円筒式とがあるが、現在はほとんどの杭が端板式(図4.3.24参照)である。なお、端板式の溶接部は部分浴込み溶接である。


図4.3.24 端板式溶接継手

(2) 上下の杭軸が一直線になるように上杭は頭部を支持して仮付け溶接を行う。

必要がある場合は仮締め治具を用いて支持する。仮付けは、点付け程度のものでなく、必ず 40mm以上の長さとし本溶接と同等の完全なものとする。

(3) 溶接部は接合前にワイヤブラシ等を用いて泥土、ごみ、錆、油脂、水分等、溶接に有害なものを除去する(7.6.6参照)。

(4) 降雨時、降雪時、強風時(10m/秒程度以上)には溶接を行ってはならない。
また、原則として気温が 0℃以下の場合は溶接を行ってはならない。ただし、気温が0℃から-15℃の場合は、溶接部から100mm以内の部分を36℃以上に予熱して行う場合はこの限りではない。

(5) 多層溶接を行う時は、下層のスラグ及び有害物の除去を十分に行ったのち、次層を溶接する(7.6.7 (i)参照)。

(6) 盛上げの不足があってはならないが、余盛りは3mm以下とし、不要な余盛りは行わない。

(7) 半自動アーク溶接による溶接条件の参考例を表4.3.12に示す。

(c) 溶接部の確認
溶接部は JIS A 7201(遠心力コンクリートくいの施工標準)の8.2[溶接継手による場合]のg)目視による確認で、全数検査を行う。

(d) 継手部に接続金具を用いた方式(無溶接維手)
継手部に接続金具を用いた方式は、数種類が建築基準法に基づく指定性能評価機関において性能を評価されている。施工は、各工法に定められた施工条件によるものとする。図4.3.25及び26にその代表例を示す。

表4.3.12 杭の半自動アーク溶接条件例(JIS A 7201 : 2009)


図4.3.25 無溶接継手例1


図4.3.26 無溶接継手例2

4.3.7 杭頭の処理

(a) 最近の既製コンクリート杭は、特定埋込杭工法による施工が多く、この工法は掘削深度を管理して杭の打設を行うために、杭頭の高さもそろえて施工されるので、切断することが少ない。したがって、その他の工法等で杭頭を切断する必要がある場合には、設計担当者が特記することとされている。

(b) 所定の高さより低い場合は、設計担当者と打ち合わせる。

(c) 杭頭を切断する方法には、次のように油圧ポンプによる外圧方式と回転モーターによるダイヤモンドカッタ一方式等がある。

(1) 外圧方式
所定の切断面より100mm上がり程度の位置に鋼製バンドを締付け、杭頭切断機用いて切断したのち、バンドを取り外し、所定の高さまで、はつりのみを用い、手はつりを行う。この場合、押圧方向は軸筋位置を避け、手はつりでは軸筋をたたかないようにし、縦ひび割れが生じないように注意して行う。プレストレス量の大きい杭は特に注意が必要である(図4.3.27及び28参照)。

この方法は広く使われており、切断面がはつり面のため基礎との付着が期待でき、軸筋を残す場合も有利な方法である。

(2) ダイヤモンドカッタ一方式
所定の切断面にブレードが位置するように切断機をセットし、杭の周りをガイドリングを介して一周し、切断又は軸筋サークルより内側までの切込みを入れてタガネ割りする方法である(図4.3.27参照)。

この方法は、切断面が平滑で作業の衝撃も小さく軸筋も同時に切断してしまう特徴がある。


図4.3.27 杭切断機の例


図4.3.28 手はつりの例

(d) プレストレストコンクリート杭の頭部を切断した場合は、切断面から350mm程度まではプレストレスが減少しているので、設計図書により補強を行う。

(e) 基礎コンクリート打込み時に、コンクリートが杭の中空部に落下しないように図4.3.29のように杭頭をふさぐ処置をしておく。


図4.3.29 コンクリート落下防止の例

4.3.8 施工記録

(a) 施工記録の目的及び全般的な報告書の記載事項については,4.2.5 (1)及び(2)を参照する。

(b) 打込み工法の施工記録
(1) 記録報告する事項等は、次のとおりであり、分かりやすく整理しておく。
(i) 一般事項
① 杭位置図(位置のずれを含む)
② 杭種類材質、形状寸法製造工場名
③ 打込み機の名称と性能諸元

(ii) 打込みに関する事項
① 打撃回数    [ 回/m ]
② 全打撃回数   [ 回 ]
③ 打込み深さ   [ m ]
④ 打込み所要時間 [ 時分 ]
⑤ ハンマー落下高さ[ m ]
⑥ 最終貫入量   [ mm ]
⑦ リバウンド量  [ mm ]
⑧ 推定支持力

(iii) その他
①溶接施工記録
②杭頭切断記緑

(2) 試験杭の施工記録試及び杭頭切断記録書式は、JIS A 7201(遠心力コンクリートくいの施工標準)に示す。

(c) 特定埋込杭工法の施工記緑
特定埋込杭工法の報告書については、各工法に定められた書式に従って作成する。

(d) セメントミルク工法の施工記録
(1) 報告する事項等は、次による。
(i) 一般事項
① 杭位置図(位置のずれを含む)
② 杭種類、材質、形状、寸j法、製造工場名
③ 打込み機の名称と性能諸元
④ 各掘削・固定液等の諸元

(ii) 掘削に関する事項
① 掘削液の記録(標準調合、比重、使用量)
② 根固め液(強度、使用量)
③ 杭周固定液(強度、使用量)
④ 掘削土の確認事項
⑤ 掘削所要時間
⑥ 等深線図と掘削深さの関係
⑦ アースオーガー駆動用電動機の電流値
⑧ 注入材の吐出量、吐出圧、注入量

(iii) その他
(b)に準ずる

(2) 「埋込み杭施工指針・同解説」に定められている杭の施工記録の例を図4.3.30に示す。

図4.3.30 杭の施工記録の形式及び記入例(埋込み杭施工指針より)